# Chapter 9

Energy Dispersive X-ray spectrometer: The Introduction and Application

(Chapter 32, 33)

## 9. **X-ray analysis: Why bother?**

#### **AEM:** *analytical electron microscope*

**EDX**: *X*-ray energy-dispersive spectrometer

## Why bother?

TEM gives us two-dimensional projected images of 3D transparent specimens.

The operator need substantial experience in order to interpret the images correctly.



## 9.2 TEM beam-specimen interactions and signals



## **X-RAY EMISSION**

## What we get from X-ray?

- Element constitute
- Quantify the amount of element

# **Two kinds of X-rays are produced:**

- Characteristic X-rays: useful to the materials scientist
  - Bremsstrahlung X-rays: useful to the biologist
  - $\rightarrow$  electron decelerated by the Coulomb field of the nucleus, it emits Bremsstrahlung X-ray.



## EELS and x-Ray Signal Generation



#### Nomenclature of EELS ionization edges



## **CHARACTERISTIC X-RAYS**

## How to produce characteristic X-rays?



The energy of the emission is characteristic of the difference in energy of the two shells involved and is unique to the atom.

#### DIPOLE-SELECTION RULE

The change  $\Delta l$  in the angular momentum quantum number between the initial and final states must equal  $\pm 1$ .

Electrons must obey when they jumped between shells





## **Selection rule: ELECTRON SHELLS**



#### DIPOLE-SELECTION RULE

The change  $\Delta l$  in the angular momentum quantum number between the initial and final states must equal  $\pm 1$ .







## X-ray fluorescence yield





X-ray fluorescence yield (log scale) as a function of atomic number Yield is very low for low z elements



# 9.3 EDX vs EELS

- The *EELS* is one step signal, while *EDX* is a two step signal (low x-ray fluorescence yield for low Z). In general, the yield rate of the EELS is higher than EDX.
- the signal of EELS concentrates in a small angle range of the transmitted beam, but the EDX signal spans around larger angle range.

(a) These two cause EELS has higher core loss signal
(higher Signal to noise ratio, EELS has less recording time)

#### X-ray and EELS spectra

## (b) EDX has better Signal/ background ratio



Background of EELS:

arises from the inelastic scattering from the atomic electron whose binding energy less than the edge energy

Background of EDX: arises from bremsstrahlung

# Influence by Resolution changing @ different ICR



#### 125eV

#### 133eV

#### 140eV





......



## **The Energy-Dispersive Spectrometer**

## **3 COMPONENTS**

The three main parts of an XEDS system are (i) the detector (ii) the processing electronics (iii) the computer

Si(Li) detector and SDD (Silicon Drift Diode)

## **Detector Types**





#### **Technological Progress**

**Bruker AXS Microanalysis** 



**(B)** 



# 9.4.1 Semiconductor Detector





It takes  $\sim$ 3.8 eV to generate an electron-hole pair in Si, so a Be  $K_{\alpha}$  X-ray will create at most ~29 electronhole pairs, giving a charge pulse of  $\sim 5 \times 10^{-18}$  C!

(a)

Usually, Si contains p-type impurity,

We usually compensate with Li to create Intrinsic Si. Si(Li) is operated under LN2 temperature to prevent Li drift

## • Si(Li) detector



### The three main parts of the XEDS system are ...



The detector generates a charge pulse proportional to the energy of X-ray

The pulse is first converted to a voltage (detector is off) The signal is then amplified throught a field effect transistor (FET): detector is off

# The EDX detector device



Figure 32.4. Cross section of a Si(Li) detector. The incoming X-rays generate electron-hole pairs in the intrinsic Si which are separated by an applied bias. A positive bias attracts the electrons to the <u>rear</u> ohmic contact after which the signal is amplified by an FET.

# Windows types:

#### •

#### **Beryllium (Be) window detector:**

The thickness of Be is about  $7 \sim 12 \mu m$ , it is too thick to detect xray. The x-ray energy less than  $\sim 1 \text{keV}$  are strongly absorbed. Therefore the K<sub>a</sub> of Z<11 can't detect.(like B, C, N and O)

#### •

#### Ultrathin window(UTW, ATW) detector:

The thickness of UTW is usually <100 nm and the composition of polymer, diamond, boron or silicon nitride. The newer UTW like ultrathin diamond or BN or Al/polymer can withstand atmospheric pressure, termed ATWs.

#### Windowless detector:

This system require high vacuums, like UHV system(~10<sup>-8</sup> Pa). The best performance of this system is the detection of Be(110 eV) K  $_{\alpha}$ 

# **Compare the EELS and EDX technique**

- Prior to the 1980, most EDX detector were protected (from the water vapor and hydrocarbon in the microscope column) by a 10µm thickness beryllium window, which strongly absorbs photons of energy less than 1000eV and percludes analysis of elements of atomic number less than 11.
- With development of ultrathin (UTW) or atmosphericpressure (ATW), elements down to boron can be routinely detected, making EDX competitive with EELS for microanalysis of light elements in a TEM specimen.

#### Low energy efficiency calculated for different window types



The p and n regions, at either of the detector, are usually termed "Dead layer"



**Dead layer effect:** 

# Why use Liquid N<sub>2</sub> cooling?

- Thermal energy would active electronhole pair, **giving a noise level**. The Li atoms will diffuse under applied bias, that will **destroy the intrinsic property**. The poise in FET will **mask the signal**
- . The noise in FET will **mask the signal** from low-energy X-rays.

•The dead layer effect is more clearly at low-Z element.

#### Incomplete-charge collection (dead layer effect):



because of the dead layer, the Xray peak will not be a perfect Gaussian shape. Usually the peak will have a low-energy tail, because some X-ray energy will be deposited in the dead layer and will not create electron-hole pairs in the intrinsic region. You can measure this ICC effect from the ratio of the full width at tenth maximum (FWTM) to the FWHM of the displayed peak,

#### **IDEAL GAUSSIAN**

An ideal Gaussian shape gives a ratio FWTM/ FWHM of 1.82 (Mn  $K_{\alpha}$  or Ni  $K_{\alpha}$ ) but this will be larger for lower-energy X-rays that are more strongly absorbed by the detector.

## Intrinsic Germanium Detectors:

# The higher purely intrinsic region is easy produced than Si

## The intrinsic region (IG) is ~5 mm and can 100% efficient detect Pb Kα ~75keV

## The energy for e/h pair of IG is about 2.8 eV, smaller than Si(3.8 eV)

#### **PROTECT YOUR DETECTOR**

The intense doses of high-energy electrons or X-rays which can easily be generated in an AEM (e.g., when the beam hits a grid bar) can destroy the Li compensation in a Si(Li) detector, but there is no such problem in an IG crystal.

